The Complexity of the Equivalence Problem for Nonsolvable Groups
نویسندگان
چکیده
The equivalence problem for a group G is the problem of deciding which equations hold in G. It is known that for finite nilpotent groups and certain other solvable groups, the equivalence problem has polynomial-time complexity. We prove that the equivalence problem for a finite nonsolvable group G is co-NP-complete by reducing the k-coloring problem for graphs to the equivalence problem, where k is the cardinality of G.
منابع مشابه
An efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملOn the covering number of small symmetric groups and some sporadic simple groups
A set of proper subgroups is a covering for a group if its union is the whole group. The minimal number of subgroups needed to cover G is called the covering number of G, denoted by σ(G). Determining σ(G) is an open problem for many nonsolvable groups. For symmetric groups Sn, Maróti determined σ(Sn) for odd n with the exception of n = 9 and gave estimates for n even. In this paper we determine...
متن کاملSignature submanifolds for some equivalence problems
This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.
متن کاملNonsolvable Groups with No Prime Dividing Three Character Degrees
Throughout this note, G will be a finite group, Irr(G) will be the set of irreducible characters of G, and cd(G) will be the set of character degrees of G. We consider groups where no prime divides at least three degrees in cd(G). Benjamin studied this question for solvable groups in [1]. She proved that solvable groups with this property satisfy |cd(G)| 6 6. She also presented examples to show...
متن کاملThe graph of equivalence classes and Isoclinism of groups
Let $G$ be a non-abelian group and let $Gamma(G)$ be the non-commuting graph of $G$. In this paper we define an equivalence relation $sim$ on the set of $V(Gamma(G))=Gsetminus Z(G)$ by taking $xsim y$ if and only if $N(x)=N(y)$, where $ N(x)={uin G | x textrm{ and } u textrm{ are adjacent in }Gamma(G)}$ is the open neighborhood of $x$ in $Gamma(G)$. We introduce a new graph determined ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007